Stickstoffs Trägheit geknackt
Neue Erkenntnis von HZB-Forschern soll zu besseren Halbleitermaterialien führen
Stickstoff ist als Hauptbestandteil der Luft ein allgegenwärtiges, aber trotzdem wenig beachtetes Element. Das Molekül gilt als reaktionsträge, man nennt es auch inert. Im Labor arbeitet man deshalb immer dann unter Stickstoffatmosphäre, wenn Sauerstoff oder die Feuchtigkeit der Luft zu aggressiv für empfindliche Proben sind. Der Grund für die Trägheit: Zwei Stickstoffatome sind im Molekül derart fest aneinandergebunden, dass sie für ihre Umgebung kaum Interesse haben.
Forscher des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB) kratzen nun an dem sauberen Stickstoff-Image. Im Fachmagazin Physical Review Letters erklären sie, was tatsächlich passiert, wenn Stickstoff mit einem Festkörper, wie zum Beispiel Zinkoxid in Verbindung tritt.
„Unsere Ergebnisse erklären, warum es schwierig ist, die elektrische Leitfähigkeit von Halbleitermaterialien durch Dotieren mit Stickstoff zu ändern“, sagt Prof. Norbert Nickel vom HZB. Zu dieser Aussage kommt er aufgrund von Berechnungen, die sich aus der Dichtefunktionaltheorie ableiten.
Nickels Berechnungen ergeben, dass das Stickstoffmolekül mit dem Zinkoxid-Gitter in Wechselwirkung tritt und dabei Bindungen zwischen Zink und Sauerstoff aufbricht. In der Folge entstehen im Kristallgitter Defekte, die zu einer verminderten elektrischen Leitfähigkeit führen. „Dieser Reaktionsweg ist typisch für eine ganze Reihe von sogenannten Verbindungshalbleitern, zum Beispiel Magnesiumoxid oder Natriumchlorid“, sagt Prof. Nickel.
Verbindungshalbleiter werden in der Elektronik und Optoelektronik verwendet. Sie dienen als Basismaterialien, deren elektrische Leitfähigkeit durch den gezielten Einbau von Fremdatomen, das sogenannte Dotieren, erhöht werden kann. Dabei ist es nicht immer einfach, das Fremdatom an der richtigen Stelle im Kristallgitter des Halbleiters zu platzieren. Bislang ungeklärt blieb beispielsweise die im Experiment gefundene Tatsache, dass das Dotieren von Zinkoxid selbst mit hoher Stickstoffkonzentration kaum zu mehr Ladungsträgern im Kristall führt. Eine mögliche Antwort haben die Forscher um Prof. Nickel nun gegeben: die eingeschleusten Stickstoffatome finden sich im Inneren des Halbleiters zu Stickstoffmolekülen zusammen und diese treten in beschriebener Weise in Wechselwirkung mit dem Kristallgitter.
„Zunächst einmal ist die Arbeit Grundlagenforschung. Sie liefert Erkenntnisse darüber, wie sich Stoffe verhalten und welchen Reaktionsmechanismen sie unterliegen“, sagt Prof. Norbert Nickel. Doch darüber hinaus können die Erkenntnisse helfen, den Dotierprozess zu optimieren.
Originalarbeit in Phys. Rev. Lett. 103, 145501 (2009), DOI: 10.1103/PhysRevLett.103.145501 “Defects in compound semiconductors caused by molecular nitrogen"N. H. Nickel and M. A. Gluba
Weitere Informationen:
Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)
Prof. Dr. Norbert Nickel
Institut Silizium-Photovoltaik
Kekuléstr. 5, 12489 Berlin
Tel.: 030-8062-1301, -1317
nickel(at)helmholtz-berlin.de