Quantenlicht aus Diamant und Plastik
Forscher wählen ungewöhnlichen Hybridansatz durch Kombination von zwei verschiedenen Materialien
Einem Team aus Forschern der Berliner Humboldt-Universität und dem Karlsruher Institut für Technologie (KIT) ist es gelungen, mit einem sehr einfachen Verfahren stabile Quellen für einzelne Lichtquanten herzustellen. Bei der Anfang April in der Open Access Fachzeitschrift Scientific Reports der Nature Publishing Group veröffentlichten Arbeit wählten die Forscher einen ungewöhnlichen Hybridansatz durch Kombination von zwei ganz verschiedenen Materialien.
Zum einen waren dies kleinste Diamantsplitter. Diamant enthält neben Kohlenstoff auch andere Atome als natürliche Verunreinigungen. Diese Fremdatome sind als so genannte Farbzentren für die gelbliche oder bläuliche Färbung natürlicher Diamanten verantwortlich. Wegen ihrer geringen Größe von nur einigen wenigen Millionstel Millimetern enthielten die Diamantsplitter bisweilen nur jeweils ein einzelnes Farbzentrum, das dann gezielt mit Hilfe von Laserlicht angeregt werden konnte. Das Farbzentrum gibt die Anregungsenergie dann durch Emission von einzelnen Lichtquanten, oder Photonen, wieder ab.
Die Forscher vermischten nun die Diamantsplitter mit einem speziellen Photolack. Durch Bestrahlung der Lackschicht mit einem fokussierten Laserstrahl konnte der Lack lokal polymerisiert, d.h. in Plastik umgewandelt, werden. Auf diese Weise können nahezu beliebige dreidimensionale Strukturen geschrieben werden, die dann einzelne Diamamtsplitter mit einzelnen Farbzentren als Quantenlichtquellen enthalten. Das Team konzentrierte sich zunächst auf optische Wellenleiter und Resonatoren, mit denen dann die von den Farbzentren abgegebenen Photonen mit hoher Effizienz eingesammelt und weitergeleitet wurden.
Ein großer Vorteil des neuen hybriden Materialsystems ist zum einen die gut etablierte und sehr preiswerte Herstellungsmethode und zum anderen die unbegrenzte Stabilität der Photonenemission auch bei Zimmertemperatur. Die Forscher arbeiten nun daran, die neuen Strukturen mit anderen optischen Instrumenten zu kombinieren. Auf diese Weise ließen sich zahlreiche Anwendungen im Bereich der hochauflösenden Mikroskopie, der optischen Sensorik oder auch der Quanteninformationsverarbeitung verlässlich und kostengünstig realisieren.
Weitere Informationen
Kontakt
Prof. Dr. Oliver Benson
Institut für Physik
Humboldt-Universität zu Berlin
oliver.benson(at)physik.hu-berlin.de