Neues Verfahren für bessere Thermokunststoffe
Forschungsteam an BESSY II konnte Leistungsfähigkeit von umweltfreundlichen Materialien steigern
Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch auf die Grenzflächen in diesen Mischungen an. Ein Team der Technischen Universität Eindhoven in den Niederlanden hat nun an BESSY II untersucht, wie sich mit einem neuen Verfahren aus zwei Grundmaterialien thermoplastische „Blends“ mit hoher Grenzflächenfestigkeit herstellen lassen: Aufnahmen an der neuen Nanostation der IRIS-Beamline zeigten, dass sich dabei nanokristalline Schichten bilden, die die Leistungsfähigkeit des Materials erhöhen.
Biobasierte Thermoplaste gelten als umweltfreundlich. Sie werden nicht aus erdölbasierten Rohstoffen gewonnen, sondern aus nachwachsenden pflanzlichen Materialien und lassen sich wie Standardthermoplaste recyceln. Ein thermoplastisches Basismaterial ist Polymilchsäure (PLA), die aus Zuckerrohr oder Mais hergestellt werden kann. Weltweit arbeiten viele Forschungsgruppen daran, die Eigenschaften von PLA-basierten Kunststoffen zu optimieren, indem sie sie beispielsweise mit anderen thermoplastischen Basismaterialien mischen. Dies ist jedoch eine echte Herausforderung.
Neues Verfahren für bessere Mischung
Nun zeigt ein Team der TU Eindhoven um Prof. Ruth Cardinaels, wie sich PLA erfolgreich mit einem anderen Thermoplast mischen lässt. Sie entwickelten ein Verfahren, bei dem während der Herstellung bestimmte PLA-basierte Ko-Polymere (z. B. SAD) gebildet werden. Diese erleichtern die die Vermischung der beiden Grundstoffe, indem sie an den Grenzflächen zwischen den verschiedenen Polymerphasen besonders stabile (stereo)-kristalline Schichten bilden (ICIC-Strategie).
Experimente an der IRIS-Beamline von BESSY II
An BESSY II haben sie nun herausgefunden, welche Prozesse dafür sorgen, dass die mechanischen Eigenschaften des gemischten Thermoplasten deutlich besser sind. Dazu untersuchten sie an der IRIS-Beamline von BESSY II reine 50%-Mischungen der Thermoplaste PLA und Polyvinylidenfluorid (PVDF) sowie Proben mit den PLA-basierten Copolymeren.
Kristallisation ist entscheidend
Mit Hilfe der Infrarotspektroskopie an der IRIS-Beamline konnte der Doktorand Hamid Ahmadi die Bildung des PLA-basierten Copolymers SAD nachweisen. Weitere Röntgenmessungen zeigten, wie sich die Bildung von SAD auf das Kristallisationsverhalten auswirkt. Die neuen Möglichkeiten der Nano-Bildgebung und -Spektroskopie an der IRIS-Beamline ermöglichen eine chemische Visualisierung und Identifizierung von Probenbereichen, die nur 30 nm groß sind. Diese Präzision war entscheidend für die Feststellung, dass sich die Stereokomplexkristalle ausschließlich an der Grenzfläche befinden. Infrarot-Nanoskopie-Bilder zeigten eine 200-300 nm dicke Schicht aus Stereokomplexkristallen an den Grenzflächen.
Grund für bessere Stabilität
Die Bildung von Stereokomplexkristallen an den Grenzflächen erhöht die Stabilität und Kristallisationstemperatur. Die Keimbildung an der Grenzfläche beschleunigt den gesamten Kristallisationsprozess innerhalb der PLLA/PVDF-Mischung. Außerdem verbessert die kristalline Grenzschicht die Übertragung mechanischer Spannungen zwischen den Phasen und somit die Zugeigenschaften; die Bruchdehnung steigt sogar um bis zu 250%.
„Durch die Aufklärung der Lage und Verteilung der kristallinen Schicht in unseren Proben konnten wir das Mischverfahren viel besser verstehen“, sagt Hamid Ahmadi. „Durch die Entwicklung einer neuen Strategie haben wir den Weg für die Entwicklung von Hochleistungspolymermischungen geebnet“, fügt Ruth Cardinaels hinzu.
Hinweis: Die IRIS-Beamline bei BESSY II wurde in 2024 um eine Nanomikroskopie erweitert, die es ermöglicht, Bilder von Probenbereichen von ~30 nm zu erstellen und IR-Spektroskopie durchzuführen.
Publikation:
Toughening immiscible polymer blends: the role of interface-crystallization-induced compatibilization explored through nanoscale visualization
Hamid Ahmadi, Paul M. H. van Heugten, Alexander Veber, Ljiljana Puskar, Patrick D. Anderson, Ruth Cardinaels
ACS Applied Materials & Interfaces (2024). DOI: 10.1021/acsami.4c10829
Kontakt:
Prof. Dr. Ir. Ruth Cardinaels
TU Eindhoven
Department of Mechanical Engineering
R.M.Cardinaels(at)tue.nl
Helmholtz-Zentrum Berlin für Materialien und Energie
IRIS THz/Infrared Dipole Beamline
Dr. Ljiljana Puskar
+49 30 8062-14739
ljiljana.puskar(at)helmholtz-berlin.de
Dr. Alexander Veber
+49 30 8062-13443
alexander.veber(at)helmholtz-berlin.de
Dr. Antonia Rötger
Pressestelle
+49 30 8062-43733
antonia.roetger(at)helmholtz-berlin.de
Pressemitteilung HZB vom 4.11.2024