Katalyseforschung mit dem Röntgenmikroskop an BESSY II
Wissenschaftler untersuchten, wie sich innovative Katalysatoren während der Ammoniak-Synthese verändern

Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
Ammoniak (NH3) ist ein Grundbestandteil von Dünger und sichert weltweit die Produktivität der Landwirtschaft. Bisher wird Ammoniak industriell mit hohem Energieaufwand über das Haber-Bosch-Verfahren synthetisiert. Dabei entstehen relevante Mengen an Treibhausgasen, die den Klimawandel vorantreiben. Mit der Entwicklung von alternativen Methoden könnte Ammoniak mit deutlich weniger Treibhausgas-Emissionen produziert werden.
Katalysatoren für die Ammoniak-Synthese mit weniger Emissionen
Dazu gibt es vielversprechende Ansätze. So hat ein Team aus dem Fritz-Haber-Institut einen Katalysator auf Basis von nanokristallinem Kupferoxid untersucht. Während der katalytischen Reaktion wandelte sich ein zunehmender Anteil dieser Nanokristalle in metallische Partikel aus reinem Kupfer um.
Neue Einblicke am Röntgenmikroskop TXM
Unter dem Transmissions-Elektronenmikroskop (TEM) ließen sich die morphologischen Veränderungen dokumentieren, doch um Aufschluss über die chemischen Prozesse während der Reaktion zu gewinnen, arbeitete das FHI-Team mit der Gruppe um Prof. Gerd Schneider am HZB zusammen. Das Transmissions-Röntgenmikroskop (TXM) ist weltweit einzigartig für die Katalyse-Forschung, da die Katalysatoren im gleichen Objekthalter sowohl in TEM als auch im TXM untersucht werden können, um komplementäre Informationen zur Katalyse zu gewinnen. Als Operando-Mikroskop ermöglicht das TXM auf der Nanoskala spektroskopische Daten zu ermitteln und damit eine Analyse von chemischen Prozessen und Reaktionen.
„Wir konnten zeigen, dass für längere Zeiträume sowohl Kupferdioxid- als auch metallische Kupferpartikel existieren und durch bestimmte Oberflächenhydroxid-Gruppen kinetisch stabilisiert werden“, sagt HZB-Physiker Dr. Christoph Pratsch aus dem Team um Schneider, der die TXM-Untersuchungen durchgeführt hatte.
Wechselwirkungen sind entscheidend für die Effizienz
Die Zusammensetzung dieser Mischung und die Form der entwickelten Katalysatoren hängen stark vom angelegten elektrischen Potenzial, der chemischen Umgebung und der Reaktionsdauer ab. Die Wechselwirkung zwischen dem Elektrolyten und dem Katalysator ist dabei ausschlaggebend für den Ertrag an Ammoniak und damit für die Effizienz der gewünschten Reaktion.
Ausblick: Zwei neue Röntgenmikroskope
Aktuell arbeitet das Röntgenmikroskopie-Team an der Entwicklung zweier neuer Mikroskope. Ein neues TXM wird routinemäßig vom weichen bis in den tender Röntgenbereich spektromikroskopische Untersuchung auch unter Ausnutzung der Phasendrehungen der Röntgenwellen im Objekt ermöglichen. Zudem steht ein neuartiges Raster-Röntgenmikroskop kurz vor der Fertigstellung: „Hier werden wir über die Messung der Elektronenemission sowohl Prozesse im Inneren als auch an den Oberflächen von Katalysatoren unterscheiden können“, erläutert Gerd Schneider. Zusätzlich können mittels Röntgenfluoreszenz die Elementverteilungen in nanoskaligen Katalysatoren gemessen werden. Die neuen Mikroskope können bereits an BESSY II genutzt werden. Aber ihr volles Potenzial werden sie erst an der Nachfolgequelle BESSY III entfalten, die 2035 in Betrieb gehen soll. Dann werden die beiden neuen Instrumente noch weitaus tiefere Einblicke in katalytische Abläufe ermöglichen.
Weitere Informationen:
Presseinfo des Fritz-Haber-Instiuts zum “Geheimen Leben der Katalysatoren”
Publikation:
Nature materials (2025): Revealing catalyst restructuring and composition during nitrate electroreduction through correlated operando microscopy and spectroscopy
Aram Yoon, Lichen Bai, Fengli Yang, Federico Franco, Chao Zhan, Martina Rüscher, Janis Timoshenko, Christoph Pratsch, Stephan Werner, Hyo Sang Jeon, Mariana Cecilio de Oliveira Monteiro, See Wee Chee & Beatriz Roldan Cuenya
DOI: 10.1038/s41563-024-02084-8
Kontakt:
Helmholtz-Zentrum Berlin für Materialien und Energie
Abteilung Röntgenmikroskopie
Dr. Christoph Pratsch
+49 30 8062-13177
christoph.pratsch(at)helmholtz-berlin.de
Dr. Stephan Werner
+49 30 8062-13181
stephan.werner(at)helmholtz-berlin.de
Prof. Dr. Gerd Schneider
+49 30 8062-13131
gerd.schneider(at)helmholtz-berlin.de
Pressemiteilung HZB vom 27.03.2025