FBH arbeitet an neuer Satellitenkommunikationstechnik
Halbleiterlaser sollen Mikrowellen ablösen
Satelliten kommunizieren derzeit mit Hilfe von Mikrowellentechnik. Diese Technologie könnte jedoch bald an ihre Grenzen stoßen, sagt Stefan Spießberger vom Ferdinand-Braun-Institut. Er hat ein Kommunikationsmodul entwickelt, das mit Halbleiterlasern arbeitet und die heutige Technik ersetzen kann.
Mikrowellen als Informationsträger im Weltraum haben mehrere Nachteile. Wegen ihrer großen Wellenlänge können die Kommunikationsmodule nicht endlos verkleinert werden und haben Grenzen in der Übertragungsrate. Für diese Probleme könnten optische Kommunikationsmodule mit Laserlicht die Lösung sein. „Sie arbeiten mit Wellenlängen um 1000 Nanometer, können dadurch deutlich kleiner gebaut werden und lassen wesentlich höhere Datenübertragungsraten zu“, erklärt Stefan Spießberger vom Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH). Die Strahlen eines Lasers lassen sich darüber hinaus so eng bündeln, dass Reflektionen und Störungen kein Problem mehr darstellen. Die optische Kommunikationstechnik im Weltraum steckt jedoch noch in den Kinderschuhen, erst wenige Initiativen gab es weltweit für den Bau solcher Module. Das nun am FBH entwickelte und getestete Bauelement bringt die Technologie einen großen Schritt voran und ist weltweit einzigartig.
Das Funktionsprinzip ist einfach: Ein Sender erzeugt einen Laserstrahl von genau definierter Wellenlänge und schickt ihn zielgerichtet in den Weltraum. Der Empfänger mischt diesen Strahl mit einem zweiten Strahl, dem lokalen Oszillator. Verändert man den gesendeten Strahl in kleinen Details, lassen sich diese von der Referenz im Empfänger präzise unterscheiden. Das Differenzsignal kann anschließend in einem komplexen Prozess analysiert werden. „Es wurde bereits gezeigt, dass man auf diese Art und Weise 32 und mehr verschiedene Signalstellungen codieren kann“, so Spießberger. Damit ist eine sehr schnelle Datenübertragung möglich. Des Weiteren können dadurch Signale mit sehr geringer Leistung nachgewiesen und ausgewertet werden.
Tesat-Spacecom hat bislang Festkörperlaser-basierte Module im Weltraumeinsatz. Das deutsche Technologieunternehmen konnte damit zeigen, dass die optische Kommunikation auch in der Praxis gut funktioniert. Der eingesetzte, vergleichsweise großformatige Festkörperlaser wird von halbleiterbasierten Lasermodulen optisch gepumpt. Die dafür genutzten Pumpmodule wurden am FBH im Rahmen mehrerer DLR-geförderter Projekte entwickelt und realisiert. Durch diesen Aufbau ist die Gesamtkonstruktion größer, unhandlicher und ineffizienter als das rein halbleiterbasierte, kompakte Lasermodul des FBH. Einem Team des Instituts ist es gelungen, das Modul so zu gestalten, dass es sowohl eine hohe Ausgangsleistung als auch eine geringe Linienbreite aufweist. Unter Linienbreite versteht man die Abweichung von der eingestellten Wellenlänge. Je kleiner sie ist, desto präziser lässt sich das Differenzsignal berechnen. „Wir konnten die Linienbreite auf circa 0,4 Femtometer drücken, das ist enorm wenig bei der Ausgangsleistung des Moduls von einem Watt“, so Spießberger. Die Wellenlänge lässt sich im Gegensatz zum Festkörperlaser über einen weiten Bereich frei wählen. Im Ernstfall könnte daher die ideale Wellenlänge für die Kommunikation ermittelt und das Modul entsprechend angepasst werden. Für die Tests ist der Halbleiterlaser jedoch auf die bereits durch Tesat-Spacecom genutzten 1064 Nanometer eingestellt.
Bis die optische Datenübertragung die gängige Mikrowellentechnik in den Satelliten verdrängt hat, ist es jedoch noch ein weiter Weg, ist Spießberger überzeugt. Zum einen halten die Satellitenbetreiber gerne an etablierten Technologien fest, solange es geht. Zum anderen müsste sein Halbleiterlaser-Bauelement noch für den Weltraumeinsatz qualifiziert werden. Dazu gehören entsprechende Vibrations- und Temperaturtests sowie eine hermetisch versiegelte Hülle. „Das Besondere an dem Prototyp ist aber, dass wir bewiesen haben, dass halbleiterbasierte Lasermodule die Anforderungen der kohärenten optischen Datenübertragung im Weltraum erfüllen“, resümiert Spießberger und ist sich sicher: In 15 Jahren kommen die Betreiber der Satelliten an der optischen Datenübertragung nicht mehr vorbei.
Weitere Informationen
Petra Immerz
Communications & Public Relations Manager
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz(at)fbh-berlin.de
www.fbh-berlin.de
twitter.com/FBH_News